

Partic No	Partic short name	WP0 Manag.	WP1 Prod.	WP2 Upgr	WP3 MGT	WP4 DE	WP5 Exh.	WP6 Ass.	Total person month
1	BTG	8	15	20	2	8	2	2	57
2	ECT	4	2	1	2	23	2	2	36
3	UFL	2	2	2	44	4	2	4	60
4	BIC	10	10	40	20	120	360	10	570
5	NAMI	4	5	15	10	440	60	10	544
6	UAS	2	2	2	1	1	1	36	45
7	ZIL	2		3	5	60	20	10	100
Total		32	36	83	84	656	447	74	1412

WP 5. The development of catalysts and a system for NOx removal from diesel engine exhaust gases.

- WP 5.1: Catalyst research and catalyst screening (BIC) Fundamental research will be carried out on both catalysts for De-NOx and catalysts for reforming bio-liquids to syngas. Activity, selectivity, conversion degrees, deactivation and regeneration are the items that will be investigated. A series of different catalyst formulations will be screened. The fundamental research should result in the selection of the optimal one.
- > WP 5.2: Testing of the selected catalyst (BIC, NAMI).

This optimal bioliquids-reforming and de-NOx catalysts should be further shaped and tested in a special laboratory fixed bed set-up. This facility will be designed and constructed. Catalyst samples should be prepared in sufficient quantities to allow these lab-scale tests at BIC and NAMI, with special emphasis on poisoning/deactivation and stability. With respect to that, long term behaviour of the catalysts will be investigated as well.

WP 5. The development of catalysts and a system for NOx removal from diesel engine exhaust gases.

WP 5.3: Catalyst manufacturing and system development (BIC, NAMI)

When the performance of the optimal catalysts and their specific features are know sufficiently, larger quantities will be manufactured. Here the shape, support and the catalysts strength are also important, viz. in relation to the type of reactor that could be applied. In this task a suitable reactors will be developed together with all other necessary components of the integral DeNOx system

> WP 5.4. Exhaust gas cleaning system (BIC, NAMI, ZIL)

Based on all the results in the previous tasks, a complete system will be designed, constructed and assembled, and eventually be added to the diesel engine generator for testing and further optimization at NAMI.

Monolith Catalysts for Syngas Production (final results)

A1: Co3O4 / MnO2/Al2O3/SiO2/Net A2: Co3O4/MnO2/BaO/Net A3: Co3O4/MnO2/BaO/Fechral Net A4: Co3O4/MnO2/BaO/Twill-woven Net A5: Rh/Al2O3/Net A6: Ni/BaO/La2O3/ Al2O3 /Net

ATR Reformer									ncentr N2 I	ation balanc	(dry, :e)
H ₂ O g/h	Diesel g/h	Air, l/min	O ₂ /C	H ₂ O/ C	T1 ⁰ C Inlet mixture	T2 ⁰ C Cat inlet	T3 ⁰ C Outlet	CO %	CO ₂ %	CH ₄ %	H ₂ %
336	160	15.1	0.54	1.63	355	966	665	8.5	14	0.7	30.0
375	165	15.1	0.52	1.76	344	956	664	8.7	14	0.7	30.0
330	160	15.1	0.54	1.59	382	939	662	10.0	13	0.6	30.0
338	162	11.2	0.53	1.7	355	966	665	8.8	10.7	0.7	30.2
338	162	11.2	0.53	1.7	382	939	662	9.14	9.23	0.6	29.6
338	162	11.2	0.53	1.7	369	932	658	7.84	14.8	1.94	27.6
338	162	11.2	0.53	1.7	408	954	695	8.4	15.0	0.2	27.6

Results of Catalyst Testing in ATR of Biodiesel

ATR Reformer									Concentration (dry, N2 balance)			
H ₂ O g/h	Biodisel g/h	Air, l/min	O ₂ /C	H ₂ O/ C	T1 ⁰ C Inlet mixture	T2 ⁰ C Cat inlet	T3 ⁰ C Outlet	CO %	CO ₂ %	CH ₄ %	H ₂ %	
218	150	9.6	0.56	1.25	201	913	664	6.0	8.3	0.35	14.9	
218	150	9.1	0.53	1.25	203	907	636	5.6	9.0	0.28	16.0	
218	150	9.0	0.52	1.25	204	890	636	6.0	8.3	0.35	14.3	
163	150	11.1	0.65	0.94	200	978	708	5.2	8.0	0.28	13.0	
163	150	11.1	0.65	0.94	201	971	716	6.0	8.0	0.39	13.6	
163	150	11.1	0.65	0.94	206	991	729	5.4	8.0	0.28	13.4	
163	150	11.1	0.65	0.94	209	990	729	6.0	8.0	0.39	13.6	

Inlet Conditions		Tem	Temperature, ⁰ C			t Conce	O2/C	H2O/C		
H ₂ O g/h	Bio fuel g/h	т1	Т2	тз	H2	со	СН4	CO2		
93	152,4	390	950	712	10,4	6,5	1,26	10,6	0,933	0,52
93	166,8	387	918	700	15,8	9,1	1,5	10,4	0,858	0,48
162	166,8	381	960	710	16,9	6,2	1,14	11,6	1,036	0,84
216	166,8	382	933	720	17,6	7	1,27	12,3	1,176	1,11
93	166,8	392	926	709	13,2	8,5	1,44	10	0,858	0,48
93	166,8	387	918	700	14,8	8,8	1,41	9,7	0,859	0,48

Results of Catalyst Testing in ATR of Biofuel Model

Results of Catalysts Testing in Steam Conversion of Bioethanol

Steam R	eformer	Tempe rature	e Outlet concentration (dry)					
Ethanol g/min	H ₂ O, g/min	T, °C	CO, %	CO ₂ , %	H ₂ , %	CH ₄ , %	H2+ CO	
0.13	0.20	600	8.43	14.33	65.27	3.76	73.7	
0.13	0.20	700	15.4	10.91	67.57	1.17	82.97	
0.20	0.31	750	11.95	11.27	67.78	1.13	79.73	
0.20	0.31	750	13.60	11.80	68.93	1.17	82.53	
0.20	0.31	750	11.58	10.70	67.90	1.00	79.48	

Results of Catalysts Testing in Steam Conversion of Pyrolysis Oil

Pyrolysis oil,	H₂O, g/h	Temperature, °C	Cor pr	Composition of re products (dry co vol., %		tion ition)
9/11			СО	CO ₂	CH₄	H ₂
30	210	675	4.1	32.9	1.3	61.7

List of DeNOx Catalysts	
Simple oxides:MnO ₂ , Co ₂ O ₃ ; Fe ₂ O ₃ ; CuO, NiO; Supports: CeO ₂ , SiO ₂	
$Mixed oxides: Co2O3+MnO2+ CuO; Co2O3+MnO2+Fe2O3; Ag+Co2O3+MnO2+CuO; CuO+Cr2O3+NiO(MgO,ZnO); Supports: Al2O3, CeO2, SiO2$	
Zeolites: Fe/ZSM-5; Ag/ZSM-5; Ag+CuO/ZSM-5	
◆Bimetallic Catalysts: CuO+Co ₂ O ₃ (MnO ₂ , NiO, BaO); Ag+CuO; Bi ₂ O ₃ +MnO ₂ ; Supports: Al ₂ O ₃ ; CeO ₂ , Fe ₂ O ₃ , ZrO ₂	
Pd and Pt based catalysts: Pd/CeO ₂ ; Pd/Al ₂ O ₃ ;Pt/Al ₂ O ₃ ; Pd+Pt/Al ₂ O ₃ ; Pd+NiO/Al ₂ O ₃	
✦Ag based Catalysts: Ag/Al ₂ O ₃	
Rh based Catalysts: Rh/Al ₂ O ₃ ; Rh/ZrO ₂ , La ₂ O ₃ +Rh/Al ₂ O ₃ ; Rh/NiMgOAl ₂ O ₄ /Al ₂ O ₃	

Catalyst bee	l temperature, °C	Reduc	NO _x conversion		
inlet	outlet	H ₂ , ppm	diesel fuel, %	to nitrogen, %	
330	372	3000	3.2	88	
348	384	3000	3.2	88	
369	400	3000	3.2	76	
372	407	3000	3.2	74	
367	387	0	3.2	71	
330	347	0	3.2	73	
293	311	0	3.2	70	
330	354	0	5.1	80	
349	372	0	5.1	80	
368	394	0	5.1	82	
371	398	0	5.1	81	
372	415	3000	5.1	88	

Experimental conditions: catalyst load – 1 L, model exhaust GHSV= 9700 h⁻¹, composition of model exhaust gas (vol.%): 6.3 CO₂, 12.5 H₂O, 7.2 O₂, ca. 1500 ppm CO, 500 ppm NOx, rest N₂.

Comparison of the methods of NOx reduction in the diesel engine exhaust gases

Reduction method	Additional reducing agent	Temperature range where NOx conversion is > 90%	Fuel penalty	Platinum group metals	Catalyst life
SCR (urea)	Urea	200 – 500 °C	1 – 1.5 % of urea	None	Long
LNT (diesel fuel)	None	250 – 450 °C	> 4 % of diesel fuel	≥ 2 g/l	Short
SCR (synthesis gas + diesel fuel)	None	200 – 350 °C	3.5-4.5 % of diesel fuel	None	Not studied
LNT (synthesis gas)	None	150 – 450 °C	2 – 2.5 % of diesel fuel	None	Not studied